

234 Advanced Digital Systems

There are several scenarios that arise from clocking a flop input with unknown timing as shown in
Fig. 10.11. First, there is a chance that the applied signal will be captured successfully if it happens
to meet the flop’s setup time specification. Second, there is a chance that the input data will be
missed on the first clock cycle, because it occurs too late for the flop to detect it. If the data remains
asserted through the next cycle, it will be properly captured at that time.

Finally, there is a questionable area between capturing and missing the signal. A flop is inherently
an analog circuit, because it is built from transistors. Flops behave digitally when their timing speci-
fications are adhered to. When timing violations occur, the flop circuit may behave in a nondigital
manner and generate a marginal output that is somewhere between 1 and 0 before eventually settling
to a valid logic state. It is not certain into which logic state the flop will settle, nor is it certain exactly
how much time the flop will take to settle. This phenomenon is known as

metastability

. A flop is said
to be metastable when a timing violation occurs and it takes some time for the output to stabilize.
Metastability does not damage the flop, but it can cause significant trouble for a synchronous circuit
that is designed with the assumption of predictable timing.

Clock domains can be reliably crossed when proper design techniques are used to accommodate
likely timing violations. Some applications require that only control signals move between clock do-
mains, and others must transport entire data paths. The simpler case of individual control signals is
presented first and then used as a foundation for data paths.

Because it is impossible to avoid metastability when crossing clock domains, the phenomenon
must be managed. A control signal ostensibly triggers activity in the logic that it drives, and this des-
tination logic waits for the control signal to transition. Metastability does not prevent the signal from
reaching its destination; it introduces uncertainty over exactly when the signal will stabilize in the
destination clock domain. This uncertainty is dealt with by

synchronizing

the control signal using
extra flops prior to treating the signal as a legal synchronous input. A two-stage synchronizing cir-
cuit is shown in Fig. 10.12. The synchronizing circuit takes advantage of the high probability that a
metastable flop’s output will achieve a stable digital state within a single clock cycle. If the first
flop’s output is stable, the second flop’s output will transition perfectly and present a signal with

always @(posedge CpuClk)
begin
 if (!Reset_) begin
 Prescaler[13:0] <= 14´h0;
 Timer[7:0] <= 8´h0;
 TimerRollOver <= 1´b0;
 end
 else
 if (Prescaler[13:0] == 14´d9999) begin
 Prescaler[13:0] <= 14´h0; // roll-back to zero
 if (Timer[7:0] == TermCount[7:0]) begin
 Timer[7:0] <= 8´h0; // start over
 TimerRollOver <= 1´b1; // trigger other logic
 end
 else
 Timer[7:0] <= Timer[7:0] + 1;
 end
 else begin
 Prescaler[13:0] <= Prescaler[13:0] + 1;
 TimerRollOver <= 1´b0;
 end
end

FIGURE 10.10 Timer logic.

-Balch.book Page 234 Thursday, May 15, 2003 3:46 PM

Logic Design and Finite State Machines 235

valid timing to the internal logic. If the first flop’s output is not yet stable, chances are that it will be
very close to a valid logic level, which generally should cause the second flop’s output to transition
cleanly. To deal with metastablility is to deal with probability. As the number of synchronizing flops
is increased, the probability of a metastable state reaching the internal logic rapidly approaches zero.
A general rule of thumb is that two flops reduce the probability of metastability in internal logic to
practically zero.

An unavoidable downside of synchronizing flops is that they add latency to a transaction, because
the internal logic will not detect an asynchronous signal’s transition for two to three clock cycles af-
ter it actually transitions (when using a two-flop synchronizer). The best-case scenario of two cycles
occurs when the input signal happens to transition early enough to meet the first flop’s setup and
hold timing. If these constraints are not met because the input signal transitions too late, the flop’s

Setup and hold window

Clock

Flop Input

Flop Output

Case #1: Flop's setup time is met

Clock

Flop Input

Flop Output

Case #2: Signal transitions after timing window

Clock

Flop Input

Flop Output

Case #3: Signal transitions within timing window
(metastability)

FIGURE 10.11 Flop operation with variable input timing.

D Q D Q
Clean timing

to internal
logic

Asynchronous
input signal

Internal operating clock

FIGURE 10.12 Synchronizing flip-flop scheme.

-Balch.book Page 235 Thursday, May 15, 2003 3:46 PM

